143 research outputs found

    Cosmological perturbations from stochastic gravity

    Get PDF
    In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large scale structure formation are the quantum fluctuations of the inflaton field. These are usually computed using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for computing the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de-Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field such as Starobinsky's trace-anomaly driven inflation or when calculating corrections due to non-linear quantum effects in the usual inflaton driven models.Comment: 29 pages, REVTeX; minor changes, additional appendix with an alternative proof of the equivalence between stochastic and quantum correlation functions as well as an exact argument showing that the correlation function of curvature perturbations remains constant in time for superhorizon modes, which clarifies a recent claim in arXiv:0710.5342v

    La Relativitat general d'Einstein avui

    Get PDF

    Stochastic description for open quantum systems

    Full text link
    A linear open quantum system consisting of a harmonic oscillator linearly coupled to an infinite set of independent harmonic oscillators is considered; these oscillators have a general spectral density function and are initially in a Gaussian state. Using the influence functional formalism a formal Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. It is shown that the reduced Wigner function for the system is exactly the formal distribution function resulting from averaging both over the initial conditions and the stochastic source of the formal Langevin equation. The master equation for the reduced density matrix is then obtained in the same way a Fokker-Planck equation can always be derived from a Langevin equation characterizing a stochastic process. We also show that a subclass of quantum correlation functions for the system can be deduced within the stochastic description provided by the Langevin equation. It is emphasized that when the system is not Markovian more information can be extracted from the Langevin equation than from the master equation.Comment: 16 pages, RevTeX, 1 figure (uses epsf.sty). Shortened version. Partially rewritten to emphasize those aspects which are new. Some references adde
    corecore